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I t  is  shown  tha t  a sepa ra t ing  or  o rde r -de t e rmin ing  set  of s ta tes  on  a q u a n t u m  

logic need not determine the expectations of observables. A formula is derived 
for the transition probability between states. Using this formula, it is shown that 
the propositions do not determine the transition probability in a certain sense. 
The form of the transition probability is derived for pure states on Hilbert 
space, dominated normal states on a yon Neumann algebra, and absolutely 
continuous states on a measurable space. A metric is defined in terms of the 
transition probability. 

1. I N T R O D U C T I O N  

It is part of the folklore of quantum mechanics that observables are 
determined by propositions. By this it is meant that complete information 
about the ye s -no  experiments for a quantum system determines complete 
information about the observables of the system. In a certain sense this 
may be true since any observable can be decomposed into propositions. 
For example, in certain algebraic approaches, a bounded observable is 
represented by a self-adjoint operator A in a v o n  Neumann algebra d~ and 
by the spectral theorem A = fXPa(d~), where the spectral measure Pa(E) 
~ A  for all Borel sets E~B(R). As another example, in the quantum logic 
approach an observable is represented by a o homomorphism from B(R) 
into the set of propositions. 

However, as we shall show, this bit of folklore is not true in another 
sense. If the probabilities that propositions are true are known for a large 
number of states, this does not determine the distributions of observables. 
More precisely, one can have a set of states which separate propositions in 
a strong way and yet do not separate the expectations of observables. 
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Moreover, the transition probability between two states can be found using 
observables but not using propositions. 

2. EXPECTATION DETERMINING 

Let (L, <<.) be a partially ordered set (poser) with least and greatest 
elements 0 and  1, respectively. We denote the greatest lower bound and 
least upper bound of a, bEL ,  if they exist, by a/kb and aVb,  respectively. 
We say that L is orthocomplemented if there exists a map ' : L-->L such that 
a"  =a ,  a <  b implies that b '<  a' ,  and a V a ' =  1. Two elements a, b ~ L  are 
orthogonal (a _k b) if a < b'. We say that L is o-orthocomplete if V a  i exists 
for any sequence of mutually orthogonal elements a~EL. A o- 
orthocomplete, orthocomplemented poset L is orthomodular if a < b implies 
that b = a V ( b A a ' ) .  We call a o-orthocomplete orthomodular poset a logic 
((}udder, 1979; Jauch, 1968; Mackey, 1963; Piton, 1976; Varadarajan, 
1968, 1970). The elements of L are called propositions. 

A state on a logic L is a map a from L into the unit interval [0,1] C_ R 
such that a(1)= 1 and ot(Vai)-~ct(ai) whenever a i I aj, i=/=j= 1,2 . . . . .  A 
set of states S on L is separating if a ( a ) = a ( b )  for every a E S  implies that 
a =  b. We say that S is order-determining if a(a) < a ( b )  for all a E S implies 
that a <  b. Finally, S is strongly order-determining if a ( b ) =  1 whenever 
a(a) = 1 implies that a < b. An observable is a map x : B(R)-->L such that 
x ( R ) = l ,  E A F = ~  implies that x(E)_Lx(F) ,  and x ( u E i ) = V x ( E i )  
whenever E i f3 Ej = 0 ,  i # j  = 1,2 . . . . .  

If x is an observable and a a state, the distribution of x in the state a is 
the probability measure ax(E)=--a[x(E)] on B(R). The expectation of x in 
the state a (if it exists) is a ( x ) =  f h a x ( d l  ). A set of states S is expectation 
determining if a( x ) = a ( y )  (whenever one side exists) for every a E S implies 
that x = y .  

Let S be a separating set of states on L. Is S expectation determining? 
The following simple example shows that the answer, in general, is no. 

Example 1. Let L be the Boolean algebra of all subsets of the set 
{1,2}, and let a be the state defined by a (O)=0 ,  a({1,2})= 1, a({1})= 1/3,  
and a ({2})=2 /3 .  Let x and y be the observables defined by  x({3})= { 1}, 
x({6})={2},  and y({4})={1},  y({11/2})={2}.  It is clear that {a} is a 
separating set of states. However, 

a ( x )  = 3(1/3)  + 6(2/3)  = 5 

a(y )  = 4 ( 1 / 3 )  + (11 /2) (2 /3 )  =5  

so {a} is not expectation determining. 
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Let S be an order-determining set of states on L. Is S expectation 
determining in general? Again, the answer is no, as the following example 
shows. (Since order-determining implies separating, the following example 
supersedes Example 1. However, it is much more complicated.) 

Example 2. Using the usual set-theoretic order and complementation, 
let L be the logic of subsets of ( 1,2 . . . . .  9} generated by the sets A = { 1,2, 3 ), 
B = ( 4 , 5 , 6 ) ,  C={7 ,8 ,9 ) ,  D = ( 1 , 4 , 7 } ,  E = ( 2 , 5 , 8 } ,  F = ( 3 , 6 , 9 ) .  Let 
a 1, a 2, a 3 be the states that are uniquely defined by the following table: 

A B C D E F 

a, 1/8 2 /8  5 /8  1/10 0 9/10 

a 2 2 /8  5 /8  1/8 0 9/10 1/10 

a 3 5 /8  1/8 2 /8  9/10 1/10 0 

It is not hard to check that {al, a2, a3} is an order-determining set. Let x 
and y be the observables defined by x({0))=A U B, x ( (8 ) )=  C, y((158/73))  
=D, y({38/73))=g, y({388/73))=F. Then 

0~I(X ) = 0 ( 3 / 8 )  "3 L 8 ( 5 / 8 )  = 5 

a2(x ) = 0(7/8) + 8(1/8) = 1 

a 3 (x) = 0(6/8) + 8(2 / 8) = 2 

a~(y) = (158/73)(1/10) + (38/73)(0) + (388/73)(9/10) = 5 

a2(y ) --- (158/73)(0) + (38/73)(9/10) + (388/73)(1/10) ffi 1 

a3(y) = (158/73)(9/10) + (38/73)(1/10) + (388/73)(0) ffi 2 

Hence, (a l, a 2, a3} is not expectation determining. 

If S is strongly order-determining it is shown in Gudder (1966) that S 
is expectation determining for x and y if one of the two observables has a 
spectrum with at most one limit point. In general, it is unknown if a 
strongly order-determining set of states is expectation determining. 

3. T R A N S m O N  PROBABHJTY 

Let a, fl be states and let x be an observable on the logic L. It is not 
hard to show that there exists a finite Borel measure o such that otx, fix <<o 
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and that the expression 

, . lda x ~1121 d ~  x ~1/2 
" ~  

is independent of o. Following Cantoni (1975), we define the transition 
probability of a to fl by 

T(a, fi) =in f  T~(a, fl) 

where the infimum is taken over all observables. For  a physical motivation 
of this definition see ( ;udder (1978). 

If aCL,  we define ~ to be the unique observable satisfying f i ( ( 1 ) ) - a ,  
fi({0)) = a'. Do the propositions determine the transition probability in the 
following sense? 

T(a ,  fl) = inf Ta(a, fl) 
aE L  

In this section we shall show that the answer, in general, is no. To do this, 
we first obtain a useful formula for T(a, fl). As usual, a Borelpartition of R 
is a sequence of mutually disjoint sets E i ~B(R) such that R=  UE r A 
maximal orthogonal sequence in L is a sequence of mutually orthogonal 
propositions a i such that Vai  = 1. 

Theorem 1. TW2( a, fl)=infY~a( ai)W2fl( ai) 1/2, where the infimum is 
over all finite maximal orthogonal sequences in L. 

Proof. Let E~ be a finite Borel partition of R. Applying Schwarz's 
inequality we have 

t-Dgs do= J ,t do ] t--ggs do 

Hence, 

Tll2( a, fl ) < inf ~, ax( Ei)ll2Bx( Ei) 112 

where the infimum is over all finite Borel partitions. Let e > 0 be given and 
let x be an observable. If o=a x +fix, then ax(E),  f lx(E)<a(E) for every 



Exg~____~ ml  Transition ~ 387 

E ~ B ( R ) ,  so we can  assume tha t  da x / d o ,  df lx /do < 1 a n d  o ( R ) <  2. N o w  
assume there  exists a c > 0 such tha t  da~/do ,  d f lx /do ~ c. T h e n  there  exist  
a Borel  pa r t i t ion  E i a n d  cons tan t s  c < c i, di < 1, 1 < i < n such tha t  

XcixE, i<e, dflx -- E d i x E i  <F. 
d a -  

"['hen 

da., dB~ 

do do E r 

dax dflx dax E diXEi dax cidiXEi 
< do  do  d o  + v;Ed'x~, -E 

< dd~- EdiXE,[-i" EdiXE,(~~- Er 
< ~ + ~ ( 1 + ~ )  

H e n c e  

( dol x ~112 i d~ x ~I12 ,,.,I12,,./112,~, I 
--D-b-o s t-D-D-o/ - E-, - ,  "~ '1  

_lao. a.. .r:a,~,v/2Zaax~ '/2 ] 
<,o <,o z c,<,,x~,/[tx) t <,o: + z c: .~,: .~.  

<c-'[~+~(l+O] 

Also, 

a n d  

< c - l i seo (E , )  l i2 
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Similarly, 

ldJ/Zo( Ej) 1/2- Bx(Ey)'/21 < c -1/28o(Ej) 1/2 

Hence, 

f [ dax ]l/2[ dB~ ] 1/2 EOlx( Ei)l/2~x( Ei)l/2 l t-a-; l t-UU t do- 

< I Jl,-2g;)'t d~ "~l/2[t "-'~a ~1/2 d ~  d/:dY2~ j 

+iY. d/2d',/'o( F-,)- E ,~A e,)'/'~A e,)'/zJ 

<" f ~"~0 ] ( dOLx ~l/2(~ do ] dflx ~1/2 -- ~ r do 

Gudder 

+IE d/~dV~o(ED- E d/~o(EY/%(EY/~[ 

+IE d/~o(EY/~BAE3 '/~- E ~Az~Y/%(E;)'/~I 

< 2~-'[ ~+ ~0 +0] + ~ d/~~ a#~o(EY/~- M ED'/~I 

+ Y,/~4e,)'"~l d,'"o(~D'"~-,~,,(E';)'"'l 

< 2r +0] +~c-'/'E d/'o(E,) 

~< 2c-'[  e+e(l +e)] + 3 c - ' / 2 e + e - ' e  2 

Adjusting the constants, we conclude that 

f (  dfltx ~1/2( \-~-o d~x )1/2 
Zax(E~)W2~x(EJ/2<)\--~-~-o ] do+e (1) 

Now suppose that dax/do  or d~x/do is not bounded below by a positive 
constant. Then given e > 0, we have da~/do + e, d~,~/do + e >1 e. By the 
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above argument, there is a finite Borel partition E i such that 

s ax(Ei)ll218x(Ei)lt2<x ~ [o l ,<(Ei)+eo(Ei)] l l2[&(Ei)+eo(Ei)]  '12 

< f ( a.x ._/;.,j~l/2i d& 

~'.S \ do do 1 

f[ ia"~'':ian"~''~ ] < I, da ] ~ do ] + ( 2 e + e 2 )  1/2 do+e  

<. f ( a~ ao s I''=(t an~ ao s~'"=a~ + 2(2~+~2) '/= +~ 

Adjusting constants again we conclude that (1) holds in general. It follows 
that 

inf ~ a~(Ei)'12&(Ei) 112 < Til2(a, 18) +e 

Since e > 0 is arbitrary, we have 

r) /2(  ,~, ~l ) = inf ~ <~x( JZi)l/2&( E,) '12 

Hence, 

r'/=(<~, B)= ins Y. <~.(E,)'/=B.(e;) '/= (2) 

where the infimum is over all observables and all finite Borel partitions. If 
x is an observable and E i is a finite Borel partition, then a i =x (E i )  is a 
maximal orthogonal sequence. Conversely, if a i is a maximal orthogonal 
sequence, then there exists an observable x and a Borel partition E i such 
that x ( E i ) = a .  The result now follows from (2). II 

Using Theorem 1, our question about propositions determining the 
transition probability reduces to whether 

r'12(o~, f l)-- inf [ o~(a)ll2fl(a)ll2 +~(a')ll2fl(a')'12] 
a ~ L  
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Example 3. Let A, B, C, D, E, F be as in Example 2 and let a =51, 
fl = 5 2 in Example 2. Then 

~1/~ --5(A)1/2t~(A)l/~ + [1 - 5(A) ] 1/2[ 1 - B ( A ) ]  1/2 

= (1/8)1/2(2/8) 1/2 + (7/8)1/2(6/8) ' /1= (21/2 +421/2)/8 

Similarly, 

Hence, 

rg/2 =(10,/2 + 181/5)/8, r~/~ =(5,/2 +211/2)/8 

Ty  2 = 3 / 1 0 1 / 2 ,  T e = 1/101/2, T e = 3 / 5  

inf [ 5(a)l/2fl(a)l/2 +a(a')l/2fl(a')'/2] = 1/10'/2 
a 

Besides the two-element maximal orthogonal sequences, there are two 
three-element maximal orthogonal sequences {A, B, C} and (D, E,  F}. 
Now 

And 

5(A)'/~B(A)'/~+5(a)'/~B(a)I/~+5(C)I/~(C)I/~ 

=(1/8)1/2(2/8)1/2+(2/8)1/2(5/8)1/2+(5/8)1/2(1/8) 1/2 

=(21/2 +51/2-1-101/2)/8 

5( D)I/2~( D )I/2 +5( E)l/2~( E)I/2-[-5( F)l/2~( E)I/2=3/ lO 

Hence, 

Tl/2(a, f l)=3/lO< 1/101/2 = ~ [ 5(a)l/2fl(a)l/2+5(a')l/2fl(a') 1/2] 
a 

One can check that the states in Example 3 are not pure. If a and fl 
are pure, a more complicated example is needed. 

Example 4. Under the usual set-theoretic order and complementation, 
let L be the logic of all subsets of fl = { 1, 2, 3, 4, 5, 6} with an even number 
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of elements. Define a state ct on L by a (O)=0 ,  a ( ~ ) =  1, 

1 / 2  
a({i ,  j } ) =  0 

if i, jv~ l 
i f i = l  o r j = l  

1 
a({i ,  j , k , / } ) =  1 /2  

ifi ,  j , k , l r  
if i o r j  or k or l=  1 

It is not hard to show that a is a state. Also, a is the unique state satisfying 
a((i, j ) ) = O  if i=  1 or j =  1. Indeed, suppose fl is a state satisfying fl({i, j})  
= 0 if i = 1 or j = 1. Then 

f l ({6,2))  = ) t - + r ( ( 3 , 4 } ) =  1 -- ~t-+fl({ 5,2}) 

= A ~ f l ( ( 6 , 3 ) ) = l - t - - - ~ f l ( ( 4 , 5 } ) = l  

But, f l ({6,2})+fl({4,5})= 1 and hence t =  1/2. It follows that f l = a .  The 
state a is pure since a = A a  1 +(1 - t ) a  2 for 0 < I <  1 implies that if i =  1 or 
j = 1, then 

O= a( ( i ,  ]))=Xeq((i ,  j } ) +  (1 -X)a2({ i ,  j } )  

Hence, cq((i, j})=a2((i, j } ) = 0 .  Since a is the unique state with this 
property, ct I = a 2 so a is pure. 

Define a state fl on L just like a above with 1 replaced by 2. Then fl is 
also pure. By considering the different cases one can show that 

inf [ a( A)I/2 fl( A) 1/2 + a( A')I/2 fl( A') I/2 ] = 2 - 1 / 2  
A E L  

But 

a( (  1 ,3) )1 /2f l ( (1 ,3}) l /2+a( ' (2 ,4}) l /2f l ( (2 ,4})  1/2 

+et((5,6})l/Efl((5,6})l/2= 1 / 2 < 2 - 1 / 2 .  

In fact, one can show that  Tl/2(ot, r )  = 1/2.1 

IThe author is indebted to professor Richard Greechie for pointing out the above example. 
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4. PROPERTIES OF THE TRANSITION PROBABILITY 

In this section we shall use our equation 

Tl/2(a, fl) =inf ~ a(ai)l/2fl(ai) 1/2 (3) 

which we have proved in Theorem 1 to derive some properties of the 
transition probability. In particular, we shall derive some formulas for 
T(a, fl) in important special cases. 

The following lemma due to Cantoni (1975) is easily proved using (3). 

Lemma 2. (a) T(a, fl)= T(fl, a), (b) 0< T(a, fl)<. 1, (c) T(a, fl)=l 
if and only if a = ft. 

Proof (a) is trivial and (b) follows from Schwarz's inequality. (c) 
Clearly, T(a, a)-- 1. Now suppose that T(a, f l )=  1, and let aEL. Applying 
(3) in the Hilbert space R 2 we have 

a ( a ) ' / 2 f l ( a ) ' / 2 + [ 1 - a ( a ) ] l / 2 [ 1 - f l ( a ) ]  1/2 

: 1:  II [1 -  a(a I1( fl(a )1/2, [1-- fl(a )] 1/2) [ I 

We thus have equality in Schwarz's inequality and hence there exists a 
cER such that a(a)=cfl(a) and 1-a(a)--c[1-fl(a)]. Hence, e=  1 and 
a( a ) = fl( a ). Therefore, a--ft .  [] 

Let L(H) be the logic of all orthogonal projections on a Hilbert space 
H. For a pure state a on L we let a be a representing unit vector. We now 
obtain a simple proof of a result due to Cantoni (1975). (It should be noted 
that Cantonl's result applies to a slightly more general context.) 

Theorem 3. If a and fl are pure states on L(H), then T(a, fl)-- 

I<~,B>I 2. 
Proof. Let P/be a maximal orthogonal sequence in L(H)  and let P~ be 

the one-dimensional projection onto a. Then 

a( p=)'12 fl( p=)ilZ +a( p~)'/z fl( P') '/2 

= ( P = a ,  a)i/2(P,~i~, j ) , / i  + (P~a, a)i/E(p;i~,/~)l/z 

= l( E P,a, E KP, a, >l 

~ liP, all II e,/~ I1-- ~,, (e;a,  a~/2(P~/~,/~)~/2 = ~ a(p,)~/2B(g)~/2 

It follows that 

I<a, j>  I =~Y~ a(Pi)'/2fl(Pi) 1/2= r l /E (a ,  fl). [] 
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Let L(r be the logic of all orthogonal projections in a v o n  Neumarm 
algebra r and let ct be a faithful normal state on d~. If fl is a normal state 
on r such that fl(A*A)< Ka(A*A) for every A Er and some K > 0 ,  then 
there exists a unique positive operator T E �9 such that fl(A)=a(TA T) for 
all A E d~ (Sakai, 1965). The next result gives the "relative entropy" studied 
in Benoist and Marchand (1979), Benoist et al. (1979), Gudder et al. 
(1979), and Marchand and Wyss (1977). 

Theorem 4. T(a, fl)=[c~(T)] 2. 

Proof. Let P, be a finite maximal orthogonal sequence in L(r Then 
applying Schwarz's inequality we have 

~(r)=~(Xe, r)= X-(e,T)= X~[ e,(e,r)] 

< y~ ~(e,)'/:~(re, T)'/:= ~ ~(e,)'/:B(e,) '/: 

Hence, a ( T ) <  T1/2(ot, fl). N o w  suppose that T is invertible and let e>0 .  
By the spectral theorem, there exists a c > 0  and k I . . . . .  ~ ,  E C  such that 
c < h i < 11T 1[, 1 < i < n, and a maximal orthogonal sequence PI . . . . .  Pn E 
L(C)  such that ~ i e i < T ,  PiT=TPi for l<i<n, and iIT-Y~X,PiII<e. 
Then 

II T=- ~:x~e, ll-- ( r -  Y~ X,e,)(Z+ Y.X,e,) 

< ~[ il z II + II Y X,P, II ] < ~(21i Z il +~) 
Since Y.A2~Pi < T we have 

I,,(T) - E ~(e,)'/2'~(re, r)'/2[ 

<ll T-  y, x,~/ll + y~.(e)'/=[ ~(r=P,)-X~i,~(~',)] 

<~+ X~,r.'[o,(r2e,)-x~,,(e,)] 

<~+c--l~[ ~,(T2Pi-~2iPi)]~-E§ 2- ~2iPi) 

<~+c- ' l lr~-  X x~,e, II <~+c-'~(21ir, +~) 
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Adjusting the constants, we conclude that if T is invertible and e > 0  we 
have 

] . ( r ) -  y, r)'/'l  (4) 

Now if T is not invertible, then el+ T is invertible and from (4) it follows 
that there exists a finite maximal orthogonal sequence Pi EL(d~) such that 

ot(pi)l/2ot[(eI+ T)Pi(eI+ T)]l /2<a(eI+ T)+e 

Hence, 

eff T) + 2e > ~. a( Pi)'/2a[ (e2I+ 2 e r +  r2 )e , . ]  ~/2 

o,(e,)'/2o,(r:e,) '/2 = Z '/2 

Thus, T1/2(a, fl)<.o~(T)+2e and since e > 0  is arbitrary, we have 
Tl/2(ct, fl) < or(T). [] 

As another application, let (fl, ~)  be a measurable space. Then the 
o-algebra Y, is a logic. If ct and fl are states on Y., then ct and fl are 
probability measures. Suppose fl<<a. Then using techniques similar to 
those in Theorems 1 and 4 we can obtain the following result. 

[Jtt ]' dfl 1/2 da Theorem 5. T( ct, fl ) = 

In the Hilbertian logic L(H), it is easy to show that lt&-/~l[={2[1 - 
T1/2(ot, fl)]) 1/2. Motivated by this, if ot and fl are states on a logic L we 
define a distance function d(et, f l )=  {2[1 - Tl/2(a, fl)]}l/2. 

Theorem 6. d(a,  fl) is a metric on the states of a logic L. 

Proof. It is clear that d(a, fl)=d(fl,  a), d(a, f l ) )O and d ( a , a ) = 0  for 
all states et, fl on L. We now prove the triangle inequality. If x, y, z are unit 
vectors of a real inner product space, then 

tl x - y  II < II x - z  II + II z - y  II 

In terms of the inner product this becomes 

[2 - -2 ( x , y ) ] l / 2<[2 - -2 (X ,Z ) ] l / 2+[2 - -2 ( z , y ) ]  1/2 (5) 
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Let a; be a finite maximal orthogonal sequence in L and let a be a state. 
Since ~,a(ai)= 1, the sequence a(ai) 1/2 is a unit vector in l 2. If a, fl, 3, are 
states, then from (5) we have 

12- 2 ~, a( ai)l/2 fl( ai)1/211/2 < [2 - 2 ~ a( ai)I/2"y( ai)1/2 ] 1/2 

1 2 1/2 1/2 
- I - [2- -2Y ,~[(a i )  / f l (a i )  ] 

Hence, 

d ( a , f l ) =  [ 2 - 2 i n f  Xa(ai)'/2fl(ai)'/2] 1/2 

= s u p  [ 2 -  2 ~,, a( ai) l/2 fl( ai) 1/2 ]l/2 

< sup[ 2 -  2 X a(gi)l/2~(ai)1/2] 1/2 

+ sup [ 2 -  2 E '/2 B(,,,)1/2],/2 

v) + d(v, 
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